ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Investigation on the nature of active species in the CeCl₃-doped sodium alanate system

Xiulin Fan, Xuezhang Xiao, Lixin Chen*, Shouquan Li, Qidong Wang

Department of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People's Republic of China

ARTICLE INFO

Article history:
Received 21 July 2010
Received in revised form
28 September 2010
Accepted 13 October 2010
Available online 23 October 2010

Key words: Sodium alanate Hydrogen storage Active species CeAl₄ CeCl₂

ABSTRACT

CeCl₃-doped NaAlH₄ was directly synthesized in hydrogenation process using NaH/Al with 2 mol% CeCl₃ under ball-milling. X-ray diffraction was utilized to unveil the nature of cerium during NaAlH₄ synthesis process and succedent cycling. It is found that, CeCl₃ is reduced in the ball-milling process and following cycles, causing the formation of NaCl and Al–Ce alloy with a structure of CeAl₄. The catalytic enhancement arising upon doping the ball-milled CeAl₄ alloy is quite similar to that achieved in the CeCl₃-doped sodium alanate. Because the CeAl₄ dopant does not consume the effective hydrogen storage component, the CeAl₄-doped NaAlH₄ exhibits more hydrogen storage capacity. Moreover, CeCl₃-doped NaAlH₄ and CeAl₄-doped NaAlH₄ exhibit similar apparent activation energies estimated from Kissinger's method, suggesting the reactions are all determined by the same rate-limiting step. These results clearly demonstrate that the in situ formed CeAl₄ acts as active species to catalyze the reversible dehydriding/rehydriding of NaAlH₄.

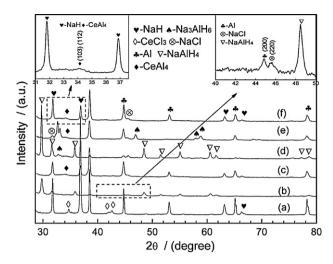
1. Introduction

Since the discovery of the catalytic effect of Ti halide precursors [1], NaAlH₄ has become a promising candidate for the solid-state storage of hydrogen. Extensive research has been focused on the sodium alanate, especially for the exploration of the dopants [2–6]. Heretofore, the most effective dopants are still halides, in particular TiCl₃ and CeCl₃ [5,7]. With the aid of these halides, NaAlH₄ can be hydrogenated and dehydrogenated under technically applicable conditions. Therefore, understanding of the catalytic mechanism in the metal-doped NaAlH₄ system has been a subject of great interest. During the past decade, several species have been proposed as the active species in the Ti-doped sodium alanate [4,7–13], yet the empirical results show that these species are all significantly inferior to that arising upon doping the hydrides with halide dopant precursors [3,8,14].

For the CeCl₃-doped NaAlH₄, the mechanism of the enhancement of the kinetics is not revealed, neither is the nature of active cerium species. According to the amount of hydrogen evolved during ball-milling, Bogdanović et al. [5] suggested that the metals may exist in zero-valent or hydridic forms in their active states. Recently, Léon et al. [15] found that the no formation of a bimetallic entity consisting of Ce and Al which is the case in Ti doped sample can be detected. Instead of that, the authors report oxidation state of

Ce(III) remains constant during preparation and cycling. In contrast, our recent work [16] shows that Ce–Al phase with a structure of CeAl₄ will be formed during the dehydrogenation of the first cycle. To gain further understanding of the catalytic effect of the CeCl₃ dopant, we therefore decided to investigate this problem in more detail to picture the nature of active cerium species. For this purpose, a systematic structure/property investigation has provided convincing the evidence of the nature of active cerium species in the Ce-doped NaAlH₄.

2. Experimental


Directly synthesis of metal-doped NaAlH₄ from NaH/Al and additives by ball-milling has been utilized as a novel method to prepare the hydrogen storage materials [17]. This novel method not only further improves the kinetics of the rehydrogenation process of the material, but also provides a perspective to probe and testify the nature of active metal species.

2.1. Sample preparation

All samples were prepared and handled in an argon-filled glovebox with the oxygen and water concentrations below 1 ppm. NaH (Aldrich, 95%, <74 μm), Al powder (Aldrich, 99.9%, <74 μm) and CeCl $_3$ (Alfa Aesar, anhydrous, 99.5%) were used as received. The catalyst of the CeAl $_4$ was prepared by induction melting stoichiometric mixtures of pure Ce (99.9%) and Al (99.9%) metals in argon atmosphere. The as-prepared CeAl $_4$ was smashed and then mechanically milled for 10 h under argon atmosphere by the Planetary mill at 300 rpm to prepare powder precursors.

The powder mixture of NaH, Al, and $CeCl_3$ or $CeAl_4$ with a molar ratio of 1:1:0.02 was milled in the Planetary ball mill (QM-3SP4J, Nanjing) at 350 rpm under a hydrogen pressure of 3 MPa. Around 2 g of mixture was prepared each time. The vial is made of stainless steel and the volume is 120 ml. The ball is made of stainless steel with a diameter of 1 cm. The ball-to-powder weight ratio was around 60:1. The G-

^{*} Corresponding author. Tel.: +86 571 8795 1152; fax: +86 571 8795 1152. E-mail address: lxchen@zju.edu.cn (L. Chen).

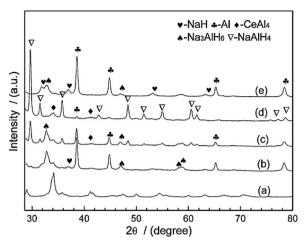
Fig. 1. XRD patterns collected in the synthesis and the following dehydrogenation–rehydrogenation cycles of CeCl₃-doped NaAlH₄: (a) starting materials before ball-milling; (b) milled for 80 h; (c) after dehydrogenation of the first cycle at 170 °C; (d) after rehydrogenation of ninth cycle; (e) after dehydrogenation of tenth cycle at 120 °C; (f) after dehydrogenation of tenth cycle at 170 °C.

forces generated in the process of milling was about 8.57 g. In a parallel investigation for comparison, the powder mixture of NaH and Al without the dopant was prepared in the same way.

2.2. Characterization

Dehydrogenation and rehydrogenation cycling of the prepared samples were carried out on a calibrated Sievert's type apparatus. The volume of sample holder is about 2.5 ml. A sample of about 0.7 g was tested. The sample holder had a thermocouple located in the center of the sample to monitor temperature in the reaction zone. For hydrogenation, the sample was first heated to the temperature of 120 °C, and then pressurized with 11 MPa $\rm H_2$. After hydrogenation, the pressure decreased to $10.00-10.40\,\rm MPa$ due to hydrogen uptake by the sample. For dehydrogenation, the measurements proceeded against a constant pressure of 1 atm. The apparatus was heated at first to $120\,^{\circ}\rm C$ and then to $170\,^{\circ}\rm C$ (first and second dehydrogenation step). It should be noted that the wt% of hydrogen is calculated on the basis of the total weight of the samples including the weight of dopants.

X-ray diffraction (XRD) experiments of the samples were performed on the ARL X'TRA diffractometer (Thermo Electron Corp.) with Cu-K α radiation. The data were collected in the range between 28° and 80° with a step width of 0.02° at a rate of $2.5^\circ/\text{min}$. The DSC measurements were performed on a Netzsch STA 449F3 instrument. A sample of about 5 mg was tested using 0.1 MPa of argon as the purge gas with a rate of $40\,\text{ml/min}$. Special caution had been taken to prevent the H_2O/O_2 contamination during the measurements.


3. Results and discussion

3.1. X-ray diffraction analysis

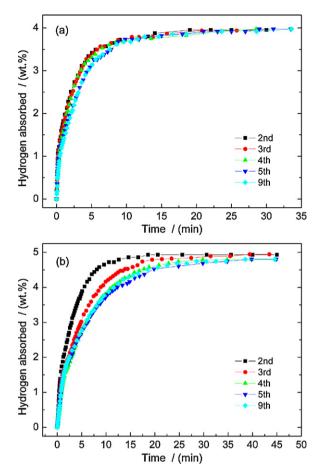
Fig. 1. shows the XRD patterns collected in the synthesis and the following dehydrogenation–rehydrogenation cycles of CeCl₃-doped NaAlH₄. It shows that after a milling time of 80 h, NaH and Al are almost completely transformed to NaAlH₄. Meanwhile, NaCl phase is detected at 2θ = 45.7° according to JCPDS 05-0628 while CeCl₃ disappears (Fig. 1b). However, no Ce-containing phases can be observed, which probably are disordered/amorphous after ball milling. This phenomenon is quite similar to the TiCl₃-doped NaAlH₄ [10,18]. Based on these facts, we can conclude that during the synthesis the dopant of CeCl₃ will react with NaH, resulting in the formation of NaCl and "Ce" entity. The reaction can be assumed to be:

$$3NaH + CeCl_3 \rightarrow 3NaCl + "Ce" + H_2$$
 (1)

After the synthesis, the dehydrogenation–rehydrogenation cycling of the CeCl₃-doped NaAlH₄ was carried out. After the first dehydrogenation, CeAl₄ is observed (Fig. 1c), which remains almost

Fig. 2. XRD patterns of dopant $CeAl_4$ ball-milled for $10 \, h$ (a) and comparison of XRD patterns obtained during the ball milling of $2 \, mol\% \, CeAl_4$ -doped and undoped NaH/Al: $2 \, mol\% \, CeAl_4$ -doped NaH/Al milled for $40 \, h$ (b); milled for $80 \, h$ (c); milled for $100 \, h$ (d); undoped NaH/Al milled for $100 \, h$ (e).

unchanged in the process of following cycles. The broad peak at $2\theta = 34^{\circ}$ can be assigned to the overlap of (112) and (103) diffraction of the CeAl₄ phase according to JCPDS 65-2678. The formation of CeAl₄ can be postulated to be:


$$"Ce" + 4Al \rightarrow CeAl_4$$
 (2)

In the cycling, CeAl₄ is identified as the sole newly formed Ce-containing species in the XRD examination. The result clearly suggests a possible correlation between the formed CeAl₄ and catalytic enhancement achieved in the CeCl₃-doped NaAlH₄.

To check this possibility, CeAl₄ was directly utilized as the dopant precursor and mechanically milled with NaH/Al mixture under a hydrogen pressure of 3 MPa. As the catalyst, the catalytic enhancement will exhibit effectively only if the parent hydrides and the catalyst can integrate effectually. The direct synthesis method provides us a simple way, which may suffice for this possibility. During ball milling, the instant temperature and the higher pressure conditions created by collision among the balls and between the vial wall and the balls may favor the integration of the dopant and the parent hydrides. The selection XRD patterns of the synthesis of CeAl₄-doped NaAlH₄ are shown in Fig. 2. As can been seen from the figure, the mixture of NaH/Al with 2 mol% CeAl₄ exhibits similar behaviors during ball milling: NaH reacts with Al and H₂ resulting in the formation of Na₃AlH₆, then the formed Na₃AlH₆ and Al transforms to NaAlH₄ under relatively high H₂ pressure. After a milling time of about 100 h, the mixture almost totally transforms to NaAlH₄ (Fig. 2d). In a comparative investigation, we failed in our attempt to synthesize NaAlH₄ just from the mixture of NaH/Al without any dopants under identical milling conditions. After 100 h milling time, only part of Na₃AlH₆ came into being (Fig. 2e). Therefore, it can be concluded that the doped CeAl₄ plays a critical role in the formation of NaAlH₄.

3.2. Hydrogen storage properties examination

If the in situ formed CeAl₄ surely is the active species in the CeCl₃-doped NaAlH₄, effectively doping the CeAl₄ to the hydrides should result in the similar kinetics. Comparative hydrogenation curves for CeCl₃- and CeAl₄-doped NaAlH₄ are shown in Fig. 3. As can be seen, the hydrogenation for the CeCl₃-doped NaAlH₄ exhibits a good cycle stability, which can be reloaded in 25 min. No obvious deterioration can be found in the tested cycles. This is in good agreement with previous investigations [5,17]. As for the CeAl₄-doped NaAlH₄, its kinetics underwent a little degradation

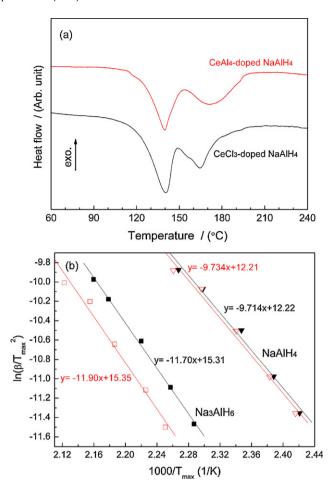


Fig. 3. Comparison on the hydrogenation profiles between the directly synthesized $CeCl_3$ -doped $NaAlH_4$ (a), and $CeAl_4$ -doped $NaAlH_4$ (b).

during the first 3 cycles and then stabilized. For catalyzed reactions, the practical catalytic effectiveness relies not only on the intrinsic activity of the catalyst, but also on the distribution state of the catalyst particles. In the case of the hydrides doped with $CeCl_3$, it is believed that the $CeCl_3$ can react with NaH and Al forming a much high dispersion of $CeAl_4$ in the hydride matrix. However, by directly doping the $CeAl_4$ into the hydrides, the particle size and the dispersion will all be inferior to that of the in situ formed $CeAl_4$, which may caused these differences in the catalytic performance.

Because the dopant of CeAl $_4$ does not consume the effective hydrogen storage constitute, CeAl $_4$ -doped NaAlH $_4$ exhibits a higher hydrogen capacity compared with that of CeCl $_3$ -doped NaAlH $_4$. As can be seen from Fig. 3(b), the capacity level of 4.8 wt% at the end of the cycling test can be attained after 40 min, while for CeCl $_3$ -doped NaAlH $_4$, only about 4.0 wt% can be achieved.

To investigate the catalytic effect on dehydrogenation, the thermal decomposition behaviors of NaAlH₄ doped with 2 mol% CeCl₃ and CeAl₄ were characterized by the DSC curves shown in Fig. 4a. The two distinct endothermic peaks of the curves correspond to the two hydrogen desorption steps. Compared to the undoped NaAlH₄, which cannot release hydrogen till the temperature reaches 185 °C for NaAlH₄ and 230 °C for Na₃AlH₆, the dopants of CeCl₃ and CeAl₄ can lower the desorption temperature drastically. The first step displays a considerable desorption rate already at about 110 °C, with its peak at 139.9 °C for CeCl₃-doped NaAlH₄ and 140.8 °C for CeAl₄-doped NaAlH₄, respectively. The second step will start to decompose before the first step completely finished, and exhibits the peak at 164.1 °C for CeCl₃-doped NaAlH₄ and 171.2 °C for CeAl₄-doped NaAlH₄.

Fig. 4. (a) DSC traces at a heating rate of 2 °C/min for CeCl₃- and CeAl₄-doped NaAlH₄ after the second hydrogenation. (b) Kissinger plots for the first and the second decomposition of CeCl₃ (solid symbols, dark line) and CeAl₄-doped (open symbols, red line) NaAlH₄. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

The activation energy of NaAlH₄ and Na₃AlH₆ for hydrogen desorption can be calculated using a Kissinger analysis that is based on the shifts in $T_{\rm max}$ with heating rate (β) of 2, 3, 5, 8, and 10 °C/min⁻¹ [19]. For that, $\ln(\beta/T_{\rm max}^2)$ was plotted versus $1/T_{\rm max}$ (see Fig. 4b) The slope of the curve represents $-E_a/R$ in which R is the molar gas constant. The values of E_a for the first and the second dehydrogenation are summarized in Table 1. As a comparison, the calculated E_a of the undoped NaAlH₄ are also presented. It can be seen that after doping the additives, the activation energy all lowered significantly.

Interestingly, almost the same activation energies were obtained for the $CeCl_3$ - and $CeAl_4$ -doped $NaAlH_4$ of either the first step or the second step. An explanation for the coincidence of E_a can be deduced from the findings reported by Sandrock et al. [20] and Kircher and Fichtner [21]. They demonstrated that increasing the dopant concentration will result a faster decomposition, however, the E_a turns out to be identical for all the doped samples. As to our experiment, in situ formed $CeAl_4$ may exhibit smaller

Table 1 Experimental activation energy E_a calculated using a Kissinger analysis.

Dopant	Activation energy E _a (kJ/mol)	
	NaA1H ₄	Na ₃ A1H ₆
2 mol% CeCl ₃	80.76	97.27
2 mol% CeAl ₄	80.93	98.94
Nothing	114.2	156.8

particle size and disperse more homogeneously, however, it just influences the hydriding and dehydriding rate. Although the exact mechanism of catalysis is as yet unknown, we can assume that during the process of dehydrogenation the CeAl₄, either in situ formed or the directly doped, will catalyze the transformation of NaAlH₄ and may form the same transition state, which eventually results in the same activation energy.

4. Conclusions

By XRD investigations carried out on the samples of CeCl₃-doped NaAlH₄ in the course of synthesis and following cycles, it can be concluded that CeCl₃ reacts with hydrides in the ball milling, causing the formation of NaCl, and probably widely dispersed Ce entity or the Ce-Al cluster with poor crystallinity that cannot be detected by XRD examination. After the first dehydrogenation, as the sole newly detected Ce-containing species, Al-Ce alloy with a structure of CeAl₄ comes into being, and remains almost unchanged in the following hydrogenation and dehydrogenation cycles. The comparative study shows that, doping the as-prepared CeAl₄ to the hydrides using direct synthesis method can result in comparable hydrogen absorption and desorption kinetics. The addition of CeCl₃ and CeAl₄ can significantly lower the thermal activation energy for both decomposition steps to the similar values. These results clearly demonstrate that the in situ formed CeAl₄ acts as active species to catalyze the reversible dehydrogenation and rehydrogenation of NaAlH₄.

Acknowledgements

The financial supports for this research from the National Basic Research Program of China (2007CB209701), the National Natural Science Foundation of China (50871099, 50631020), the program for New Century Excellent Talents in Universities (NCET-07-0741) and the University Doctoral Foundation of the Ministry of Education (20090101110050) are gratefully acknowledged.

References

- [1] B. Bogdanović, M. Schwickardi, J. Alloys Compd. 253 (1997) 1-9.
- [2] B. Bogdanović, M. Felderhoff, S. Kaskel, A. Pommerin, K. Schlichte, F. Shüth, Adv. Mater. 15 (2003) 1012–1015.
- [3] M. Resan, M.D. Hampton, J.K. Lomness, D.K. Slattery, Int. J. Hydrogen Energy 30 (2005) 1417–1421.
- [4] E.H. Majzoub, K.J. Gross, J. Alloys Compd. 356 (2003) 363-367.
- [5] B. Bogdanović, M. Felderhoff, A. Pommerin, F. Shüth, N. Spielkamp, Adv. Mater. 18 (2006) 1198–1201.
- [6] T. Sun, B. Zhou, H. Wang, M. Zhu, Int. J. Hydrogen Energy 33 (2008) 2260-2267.
- [7] A. Léon, G. Yalovega, A. Soldatov, M. Fichtner, J. Phys. Chem. C 112 (2008) 12545–12549.
- [8] P. Wang, X.D. Kang, H.M. Cheng, J. Phys. Chem. B 109 (2005) 20131–20136.
- [9] C.P. Baldé, H.A. Stil, A.M.J. van der Eerden, K.P. de Jong, J.H. Bitter, J. Phys. Chem. C 111 (2007) 2797–2802.
- [10] H.W. Brinks, B.C. Hauback, S.S. Srinivasan, C.M. Jensen, J. Phys. Chem. B 109 (2005) 15780–15785.
- [11] J. Liu, Q. Ge, Chem. Commun. (2006) 1822-1824.
- [12] F. Fang, J. Zhang, J. Zhu, G.R. Chen, D.L. Sun, B. He, Z. Wei, S.Q. Wei, J. Phys. Chem. C 111 (2007) 3476–3479.
- C 111 (2007) 3476–3479. [13] J. Íñiguez, T. Yildirim, Appl. Phys. Lett. 86 (2005) 103109. [14] X.D. Kang, P. Wang, X.P. Song, X.D. Yao, G.Q. Lu, H.M. Cheng, J. Alloys Compd.
- 424 (2006) 365–369. [15] A. Léon, J. Rothe, K. Chłopek, O. Zabara, M. Fichtner, Phys. Chem. Chem. Phys. 11 (2009) 8829–8834.
- [16] X.L. Fan, X.Z. Xiao, L.X. Chen, K.R. Yu, Z. Wu, S.Q. Li, Q.D. Wang, Chem. Commun. (2009) 6857–6859.
- [17] B. Bogdanović, M. Felderhoff, A. Pommerin, F. Shüth, N. Spielkamp, A. Stark, J. Alloys Compd. 471 (2009) 383–386.
- [18] C. Weidenthaler, A. Pommerin, M. Felderhoff, B. Bogdanović, F. Shüth, Phys. Chem. Chem. Phys. 5 (2003) 5149–5153.
- 19] H.E. Kissinger, Anal. Chem. 29 (1957) 1702-1706.
- [20] G. Sandrock, K. Gross, G. Thomas, J. Alloys Compd. 339 (2002) 299-308.
- [21] O. Kircher, M. Fichtner, J. Alloys Compd. 404 (2005) 339-342.